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To understand the cellular composition and region-specific specialization of
white matter — a disease-relevant, glia-rich tissue highly expanded in primates
relative to rodents — we profiled transcriptomes of ~500,000 nuclei from 19
tissue types of the central nervous system of healthy common marmoset and
mapped 87 subclusters spatially onto a 3D MRI atlas. We performed cross-
species comparison, explored regulatory pathways, modeled regional inter-
cellular communication, and surveyed cellular determinants of neurological
disorders. Here, we analyze this resource and find strong spatial segregation of
microglia, oligodendrocyte progenitor cells, and astrocytes. White matter glia
are diverse, enriched with genes involved in stimulus-response and biomole-
cule modification, and predicted to interact with other resident cells more
extensively than their gray matter counterparts. Conversely, gray matter glia
preserve the expression of neural tube patterning genes into adulthood and
share six transcription factors that restrict transcriptome complexity. A com-

panion Callithrix jacchus Primate Cell Atlas (CjPCA) is available through
https://cjpca.ninds.nih.gov.

An understanding of microenvironmental heterogeneity and its broad
impact on biological processes is necessary to interpret experimental
perturbations, especially in the central nervous system (CNS). Recent
advances in genetic profiling tools have uncovered regional cellular
diversity in the brain’s gray matter (GM) far beyond what had tradi-
tionally been appreciated'. However, the characterization of cellular
profiles in white matter (WM) is limited due to its modest repre-
sentation in mouse. The common marmoset (Callithrix jacchus) is an
emerging animal model that bridges mouse and higher primates
genetically, immunologically, and behaviorally. Importantly, there is a
massively greater (>5-fold) subcortical WM to cortical GM volumetric
ratio in marmoset compared to mouse?, raising the possibility that
primates evolved novel but as-yet-undescribed glial heterogeneity to
support this expansion.

Moreover, beyond obvious differences in the density of neurons
and oligodendrocytes between GM and WM, the extent of structural

and functional heterogeneity of other resident cells remains unclear.
Motivating a deep investigation of such heterogeneity are prior
observations that WM-astrocytes are primed to be more advanced in
their response to pathological challenges®*. For example, compared to
astrocytes in GM, astrocytes in WM have a higher capacity for gluta-
mate clearance to handle excitotoxic insults and disproportionally
higher senescence-induced expression of GFAP (a reactive gliosis
indicator)’. Similarly, more microglia are found in WM than in GM of
normal human brain®, and microglia in WM are primed to be more
active and respond to injury faster than their GM counterparts*’?%,
Additionally, it has been shown that the timing and efficiency of
remyelination mediated by oligodendrocyte progenitor cell (OPC)
differentiation varies significantly between GM and WM’.

To determine whether location-specific regulatory programs
broadly influence resident cells, and whether these microenviron-
mental cues lead to transcriptomic segregation that further defines
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cell identities, we here describe a detailed map of the cellular com-
position across 19 CNS regions, including many WM areas, created by
profiling all cell types without preselection. We extensively investigate
the regional diversity of cells, especially with respect to GM-WM seg-
regation, by comparing transcriptome similarity across species and
datasets. We demonstrate ways of using this resource to classify
unknown cell types, query intercellular communication, and discover
associations with disease. Our carefully annotated marmoset brain cell
atlas resource, “CjPCA,” is designed to inform future studies in evolu-
tionary, developmental, and pathological neurobiology.

Results

Callithrix jacchus primate cell atlas (CjPCA) analysis pipeline
To build an atlas with sampling reproducibility, a low bias in cell-type
recovery, and good compatibility with clinical studies, we performed
single-nucleus RNA sequencing (snRNA-seq) of nuclei extracted from
uniformly sized tissue punches without preselection or sorting.
snRNA-seq is widely applied in human tissue'®, able to identify cell
types similarly to single-cell (sc) RNA-seq", and the only proven
method to analyze tissue that cannot be readily dissociated into single-
cell suspensions without introducing additional artifacts'>'>. We per-
formed in vivo magnetic resonance imaging (MRI) of the 2 marmoset
brains, cross-referenced the imaging data to 3D MRI atlases to guide
tissue sampling, surveyed cells without preselection, and grouped
them into three different categories to facilitate downstream com-
parison (Fig. 1a-d and Supplementary Fig. 1). As indexed in Fig. 1d, we
use “WM,” “GM,” and “other” (in quote marks) to indicate sampling
sites as specifically defined in our paper; WM/GM (without quote
marks) is used for general descriptive purposes, including when
mentioning published works.

To ensure that common artifacts were properly addressed in
droplet-based transcriptome analysis, we applied SoupX"” to subtract
ambient RNA background and DoubletFinder** to remove doublets for
individual samples before data integration with Harmony” (Methods,
Table 1, Supplementary Figs. 2-4, and Supplementary Data 1). We
confirmed that the segregation between major cell classes is stable and
that paired samples from different animals are comparable, without
much variation even before data alignment with Harmony (Supple-
mentary Fig. 3a). After data integration, a total of 534,575 nuclei were
recovered in Level 1 analysis, and six cell classes were determined by the
expression of canonical markers (NEU, CNTN5' neurons; OLI, MOG*
oligodendrocytes; AST, ALDHILI" astrocytes; OPC, PDGFRA" oligoden-
drocyte progenitor cells; MIC, PTPRC' microglia/immune cells; VAS,
LEPR" vascular cells/CEMIP* meningeal cells / TMEM232" ventricular
cells; Fig. 1e). We found that only a modest number of neurons (-11%
median abundance of total cells; Fig. 1f) were present in “WM,” show-
casing the precision of image-guided tissue sampling. We compared the
profile of ambient RNA, frequently detected genes, and high-ranked
variable genes in different cell types across brain regions and found no
evidence of systematic tissue type-specific contamination from back-
ground RNA or doublets after quality control (Supplementary Figs. 5, 6).

The abundance of oligodendrocytes and neurons was correlated
across tissue types (Supplementary Fig. 4e), such that more oligo-
dendrocytes were found in “WM” and more neurons in “GM,” as
expected. By contrast, “other” had cellular composition intermediate
between “WM” and “GM” (Fig. 1f). The relative composition of mar-
moset major cell types (47% neurons, 35% oligodendrocyte-lineage
cells, 12% astrocytes, and 4% immune cells) across 19 selected regions
corresponds well to morphological counting of cell types in the human
neocortex (42% neurons, 43% oligodendrocyte-lineage cells, 11%
astrocytes, and 3% immune cells) across age (18-93 years) and sex'®".
Interestingly, there was a positive correlation between the abundance
of microglia and oligodendrocyte progenitor cells (OPC) across tissue
types (Supplementary Fig. 4e), with about three-fold higher microglia
and two-fold higher OPC density in “WM” than “GM” (Fig. 1f).

Additional rounds of quality control and manifold learning con-
stituted Level 2 analysis (Methods), in which six major cell classes were
further grouped into 87 subclusters (comprising 50 NEU, 6 OLI, 5 OPC,
7 MIC, 8 AST, and 11 VAS subclusters). The 87 subclusters were then
colored by sampling site to highlight regionally enriched subtypes
(Fig. 1g). We mapped the general landscape of the dataset (Supple-
mentary Figs. 6-8) and summarized the analysis workflow in a diagram
to elucidate which type of cross-subcluster/cross-species comparison
was performed in which cell class (Fig. 2). Unless indicated otherwise,
all available nuclei collected from “WM,” “GM,” and “other” were
included in each analysis.

With respect to neurons, it was not our primary focus to define
new subtypes or quantify region and layer specificity, but we per-
formed some basic analyses to anchor the resolution of our atlas with
published datasets collected primarily from cortical regions®. In the
current atlas, we profiled five different cortical areas and employed
MRI-guided tissue collection to ensure consistency across animals. We
note that a 2-mm-diameter tissue punch is sufficient to cover nearly the
full thickness of marmoset cortex. Furthermore, the purity of cortical
sampling can be estimated by the number of oligodendrocytes present
in “GM” (8% median abundance; Fig. 1f).

For neurons, a total of 248,091 nuclei yielded 50 NEU subclusters.
We intentionally subclustered neurons at relatively low resolution to
facilitate tracking of spatial origin. We highlight well-studied markers,
cluster annotations, and sampling sites to facilitate cross-database
comparison (Supplementary Figs. 9, 10). Nuclei in the UMAP were first
colored by the expression of vesicular glutamate transporters (VGLUT;
SLC17A7, SLC17A6, SLCI7A8) (Supplementary Fig. 9b) and dot plot
colored by neurotransmitter module scores (Supplementary Fig. 9b),
dropping subclusters with less than 10% detection rate of VGLUT
transcripts. We also colored nuclei by sampling site, which demon-
strated, as expected based on our sampling, that cortical “GM” was the
major contributor of neurons, with relatively high consistency in
neuronal composition across “GM” (Supplementary Fig. 10c-g). In
addition, we observed that cortical excitatory neurons (primarily
VGLUT1") were arranged onto a continuous path in the UMAP plot
(lamination layer L2-L6, NEU32-45), which indicates similarity in the
transcriptomes of neurons that reside in adjacent laminae. As pre-
viously reported in mouse and human®, the expression of STAB2
(L2-6), LAMPS (L2/3), RORB (L4), and THEMIS (L5/6) anchor the tran-
sition of the graded pattern along this path. Given that the establish-
ment of lamination is completed prenatally*’, we cross-referenced our
findings in the adult with an available in situ hybridization (ISH)
database (Marmoset Gene Atlas) from PO marmoset”*”. We found that
the expression of lamina-enriched genes agreed with what has been
examined spatially in the database (Supplementary Fig. 11).

Overall, the major features related to neurons (Supplementary
Figs. 9-13) closely agree with several previous reports"'’. Therefore,
we focused on the strong GM-WM spatial segregation of microglia,
OPC, and astrocytes (Fig. 1g) to assess glial heterogeneity across 19
brain regions in detail. We further used GM-glia and WM-glia (i.e., WM-
microglia, WM-OPC, WM-astrocytes, written here without quote
marks) to indicate regionally enriched glial subtypes, as opposed to
glia sampled from “GM” or “WM,” which include all glia collected from
the indicated area regardless of subtype. The design of our study does
not enable us to address directly if GM- and WM-glia diverge autono-
mously (such as from different progenitors). However, we first
explored the possibility that, regardless of developmental origin, glia
might be specialized within each microenvironment in response to
different functional demands. As gene expression often falls along a
spectrum, we considered the transcriptomic landscape in its entirety
instead of using one or a few genes to define each subpopulation. In
the following analysis, we approach glial heterogeneity by comparing
the biological programs we identified in marmoset with 11 published
single-cell or single-nucleus studies in other species.
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Fig. 1| Glial transcriptome reflects differential residence in gray and white
matter. a Experimental workflow to scan and map images to marmoset MRI atlases.
b Location of samples collected as cylinders of 2 mm diameter and 3 mm thickness
on the standard slab (SS) index. A anterior, P posterior. ¢ Nuclei were isolated to
prepare cDNA libraries and sequenced. d Total sampled areas are labeled by three
types of tissue categories (Cat.): fine, coarse, and developmental (Dev). f frontal, t
temporal, p parietal, WM white matter, a anterior, p posterior, CC corpus callosum,
OpT optic tract, CTX cortex, o occipital, CgG cingulate gyrus, Cd caudate, Thal
thalamus, LGN lateral geniculate nucleus, Hipp hippocampus, MB midbrain, CE
cerebellum, cSC cervical spinal cord, Tel telencephalon, Die diencephalon, Mes
mesencephalon, Met metencephalon, SC spinal cord. e The Level 1 analysis

identified six cell classes, rendered as a uniform manifold approximation and
projection (UMAP) scatter plot annotated by expression of canonical marker genes:
neurons (NEU), oligodendrocytes (OLI), oligodendrocyte progenitor cells (OPC),
microglia/immune cells (MIC), astrocytes (AST), and vascular/meningeal/ven-
tricular cells (VAS). f Box plot showing the abundance of Level 1 clusters as a
function of tissue type; n = 42 independent samples; the median is annotated (black
diamond shape) and listed. The lower and upper hinges of the box plot correspond
to the 25" and 75" percentiles; whiskers extend from the hinges to maxima or
minima at most 1.5 times inter-quartile range. g Top, each level 1 cell class was
further subclustered in level 2 analysis. Bottom, the UMAP plots from level 2 ana-
lysis are colored by coarse tissue category.

Microglia vary in density, morphology, and identity among gray
and white matter

A total of 18,279 nuclei were included in the Level 2 analysis of micro-
glia/immune cell (MIC class; Fig. 3a). We found seven distinct sub-
clusters, of which four were circulating peripheral immune populations
(PBMC1-4) and three were brain-resident immune cells (MIC1-3). In

addition to canonical markers (P2RYI3 and ITGAX), the expression of
FLTI (vascular endothelial growth factor receptor 1) differentiates cir-
culating from resident immune cells, such that microglia were FLTI*
and PBMC were FLTI™ (Fig. 3b and Supplementary Figs. 14, 15).

We identified regionally enriched subtypes across 19 tissue types.
We denoted two subtypes (MIC1 and MIC2) as GM-microglia, for they
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Table 1| Key resources

Identifier

GEO: GSE121654

GEO: GSE132166

GEO: GSE75330
http://mousebrain.org/
GEO: GSE52564
dbGaP: phs001836
GEO: GSE97930

GEO: GSE104525
GEO: GSE73721

GEO: GSE118257

GEO: GSE180759
https://gene-atlas.brainminds.riken.jp/

Deposited Data
Hammond et. al. 2019
Marisca et. al. 2020
Marques et. al. 2016
Zeisel et. al. 2018
Zhang et. al. 2014
Polioudakis et. al. 2019
Lake et. al. 2018
Habib et. al. 2017
Zhang et. al. 2016
Jékel et. al. 2019
Absinta et. al. 2021

Marmoset Gene Atlas

Marmoset Brain Mapping https://marmosetbrainmapping.org/

Software and Algorithms Identifier
R (v3.6.12019-07-05)
Cellranger (v3.0.2)

seurat (v3.1.5)

https://cran.r-project.org/bin/macosx/

https://www.10xgenomics.com/

https://github.com/satijalab/seurat

DoubletFinder (v2.0.2) https://github.com/chris-mcginnis-ucsf/
DoubletFinder
clustree (v0.4.3) https://github.com/lazappi/clustree

SoupX (v1.4.5)
harmony (v1.0)

https://github.com/constantAmateur/SoupX

https://github.com/immunogenomics/
harmony

monocle3 (v0.2.0) https://github.com/cole-trapnell-lab/

monocle3

gprofiler2 (v0.1.9) https://cran.r-project.org/web/packages/

gprofiler2/index.html

nichenetr (v0.1.0) https://github.com/saeyslab/nichenetr

EWCE (v0.99.2) https://github.com/NathanSkene/EWCE
Ingenuity Pathway Analysis https://digitalinsights.giagen.com/
(vO1-16) product-login/

Fiji (v2.1.0/1.53c) https://imagej.net/Fiji/Downloads
Other Identifier

CjPCA website https://cjpca.ninds.nih.gov

were found to be most abundant in “GM.” We then named the other
major cluster (MIC3) WM-microglia for its absence in “GM” and
enrichment in “WM.” All three subtypes of microglia present with
various proportions in “other,” which had cellular composition inter-
mediate between relative pure WM and GM (Fig. 3¢ and Supplemen-
tary Fig. 14a, b). This GM-WM segregation of microglia was so strong
that the abundance of WM-microglia (MIC3) was positively and nega-
tively correlated with the number of oligodendrocytes and neurons,
respectively. In contrast, GM-microglia (MIC1 and MIC2) had similar
densities across brain regions (Supplementary Fig. 14c). We found that
the expression of SLCI5AI, an oligopeptide transporter, is selectively
enriched in WM-microglia (Fig. 3c) and validated that anti-SLC15A1
preferentially labels IBA1* cells in WM (Fig. 3d). Next, we performed
particle and morphological analysis on IBA1 labeling to compare the
density and the shape of microglia in GM and adjacent WM. We found
two to three times more IBA1" cells present in WM compared to GM,
which agrees with the relative abundance of microglia profiled from
“GM” and “WM” with snRNA-seq (Fig. 3c). Moreover, the shape of
microglia in WM was more elongated, indicated by a larger value of
reciprocal circularity, compared to GM (Fig. 3e-h).

To understand the functional implication of this segregation, we
identified pathways that are differentially weighted in each microglia
subtype using gene module” and gene ontology (GO) analysis and
explored the similarity of these programs compared to published work

(Supplementary Figs. 14-17 and Supplementary Data 2). It has been
shown that normal aging impacts GM and WM asynchronously**,
Therefore, we sought to compare these regionally enriched modules in
microglia against a dataset with temporal resolution. We linked mar-
moset gene names to their mouse orthologs, then cross-referenced the
expression pattern of the defined modules in microglia extracted from
the whole mouse brain (ages E14.5 to P540)>. After splitting mouse
microglia into 3 age groups (embryo, neonate, and adult; Fig. 3i and
Supplementary Fig. 16), we found that gene modules enriched in
marmoset GM-microglia were highly expressed in microglia of young
mice, whereas gene modules enriched in marmoset WM-microglia
were also highly expressed in microglia of adult mice (Fig. 3j). These
findings suggest that the transcriptomic profile of WM-microglia
appears further aged than that of GM-microglia. GM-WM segregation
of the microglial transcriptome is observed as early as P7 (during
myelinogensis) in mouse® and persists with normal aging in both
human and mouse’**?. Understanding whether environmental cues in
myelin-rich regions drive microglia specialization requires
further study.

Next, we performed a GO analysis to summarize the regulatory
programs enriched in each gene module. As a positive control, we
found the expected sharing across microglia subtypes of gene mod-
ules involved in synapse pruning, complement system, and major
histocompatibility complex (MHC) (Supplementary Fig. 17a). Next, we
focused on comparing GO terms that are specifically enriched in each
subtype. Terms related to synaptic plasticity, neurotransmitter secre-
tion, and neuron survival are enriched in GM-microglia (Knn.m3;
Supplementary Fig. 17b), whereas terms related to biomolecule
metabolism, cell movement, and response to stimulus are enriched in
WM-microglia (PG.m1/4; Supplementary Fig. 17d, e). Therefore, GM-
microglia appear younger and more involved in modulating neuronal
activity, while WM-microglia appear older and are primed to a more
reactive state even in homeostasis.

WM-OPC form a unique population with regional density closely
associated with oligodendrocytes

Our analysis demonstrates that although it is challenging to find OPC-
specific gene markers, OPC nonetheless comprises a distinct and var-
ied population and express more genes that are enriched in neurons
(e.g., CADPS, RIMS2, DLGAP1, NRXN3, and STBPSL) than do other glia
and vasculature-associated cells (Supplementary Figs. 5, 6). As with
microglia, GM-WM segregation is prominent in OPC, which we
grouped into 5 subclusters (OPCI1-5) from a total of 20,306 nuclei
(Fig. 4a and Supplementary Figs. 18-20). The number of WM-OPC
(OPC3) was positively correlated with the abundance of oligoden-
drocytes and negatively with the abundance of neurons, whereas GM-
OPC (OPC1) were similar in density regardless of sampling site (Sup-
plementary Fig. 18c).

Interestingly, several top-enriched genes related to general ner-
vous system functioning were shared between GM-OPC (OPC1) and
GM-microglia (MIC1), and both populations had fewer detected genes
compared to their WM counterparts (Supplementary Figs. 14b, 18b). In
gene module analysis (Supplementary Figs. 18e-19 and Supplementary
Data 2), we found that WM-OPC were enriched with GO processes
related to component organization, molecule modification, and stress
granules (Knn.mé; Supplementary Fig. 19d), whereas GM-OPC enri-
ched pathways are involved in neuronal support (PG.m2; Supplemen-
tary Fig. 19¢) similar to those enriched in GM-microglia. Markers
enriched in WM-OPC are known to regulate OPC dispersal (SL/IT2)*° and
inhibit CNS angiogenesis (SEMA3E)*" (Supplementary Figs. 18d, 20).
This analysis suggests that WM-OPC, in homeostasis, are a population
tuned to a more reactive state, whereas GM-OPC are more involved in
supporting neuronal functions.

In line with our finding that marmoset WM-microglia appear
transcriptionally more advanced in normal aging than their GM
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n=42 independent samples; the median is annotated (black diamond shape) and
listed. d Expression of SLC15A1 in adult marmoset brain sections. Solid arrowheads,
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microglia marker, and intense PLP1 labeling demarcates the WM area. Scale bar,
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IBAT" cells from three ROI per tissue type per biological repeat (BR) that were
quantified manually or by automatic image processing; n=9 ROI from three bio-
logically independent animals; the median is annotated (black diamond shape) and
listed. **p < 0.001, t-test, two-sided, p = 2.5E-04 (group manual), p = 5.8E-08 (group
auto). f The morphology of IBA* cells in GM and WM was extracted by processing
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from 1 (perfect circle) to infinity. h Violin plot summarizing the shape factor of IBA1"
cells. The reciprocal of circularity measured from WM cells is significantly higher
than that measured from GM cells, **p < 0.001, t-test, two-sided, p = 6.8E-07;
n=1432 cells examined over three WM areas from biologically independent ani-
mals; n =438 cells examined over three GM areas from biologically independent
animals. i UMAP plots of marmoset microglia colored by tissue type and mouse
microglia from Hammond et al. 2019 colored by animal age. j Heatmap showing the
expression of gene modules in seven MIC subclusters from marmoset and mouse
microglia grouped by age. Gene modules enriched in GM-microglia (MIC1) of
marmoset are enriched in microglia of younger mice (PG.m2/8, Knn.mé/3/5), and
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counterparts (Fig. 3i, j), it has been reported that rat OPC in WM are
more mature than those in GM*, and that they differentiate into
mature oligodendrocytes more efficiently than OPC in GM®. Electro-
physiological properties of OPC vary between WM and GM and with
age, and they correlate with differentiation potentiality>***. We exam-
ined the OPC expression of ion channel genes as a surrogate of

electrophysiological function and examined the tissue origin of dif-
ferentiating OPC (OPCS5). We found different profiles of ion channels in
GM-OPC and WM-OPC (Supplementary Fig. 21) but a similar abun-
dance (<1.5%) in OPCS5 across brain regions (Fig. 4a).

Taken together, these findings lead us to hypothesize that diver-
gent CNS environments might influence the molecular profile of their

Nature Communications | (2022)13:5531



Article

https://doi.org/10.1038/s41467-022-33140-z

a Level 2 Analysis - OPC & OPC1 @ OPC2 @ OPC3 @8 OPC4 @8 OPC5
o 100 ® 937
é 67 ?
_ 75
H
8 .
£
g 50 137 e o
g
i g 7 *
. ® OPC1_GM.enriched 2 » “
% o OPC2_GM.WM.nter 08 ° s
. * 12 09 o
OPC3_WM.enriched o, 03 0 © o 021¢
® OPC4_Diff1 0
® OPC5_Diff2 aM other WM

Marisca et. al. 2020 Marques et. al. 2016 Zeisel et. al. 2018

OPC1-5 abundance (%)
0 10 20 c

Zhang et. al. 2014

Cross-species similarity comparison

o WM °
@8 other -
® GM

+25

o
o
o

:
OPC2rA2 / OPC1 "2
§ 5
oo
R
8%
g °
t..
OPC3 A2/ OPC1 "2
g
PEO qEOO
3
3
E}

median

dr mm hs

Lake et. al. 2018

Habib et. al. 2017 Zhang et. al. 2016

Polioudakis et. al. 2019

Marmoset oligodendrocyte lineage cells

o N 55598 secIThan ID 00
55 5 55 EEEEE FYYEEYY 52252
N P E E E E E E EE E E E E :vE> té) té) 2 E
+
§85¢ § 8 ¢ eecec
L 4 @ g Qa aq aqa Q v
o O O
gRR= g g8 gL g
g 88y ggee e 2 3 gee
S532 S$3853 S 5 8 S5 5
Data type Single cell Single cell Single cell Bulk, Immumopanning
Dev. Stage 5d.p.f. P19-90 P12-60 P7-30
Tissue type Whole fish GM, other, WM GM, other GM
Count 204 323 1,040 NA

Fig. 4 | Marmoset WM-OPC form a transcriptionally disparate population that
diverges from previously reported OPC in other species. a Left, UMAP plot of
OPC colored by Level 2 subclustering. Right, relative abundance of OPC subclusters
in coarse tissue category; n =42 independent samples; the median is annotated
(black diamond shape) and listed. The lower and upper hinges of the box plot
correspond to the 25™ and 75" percentiles, whiskers extend from the hinges to
maxima or minima at most 1.5 times inter-quartile range. b Heatmap showing the
Pearson’s correlation coefficient r) between 6 oligodendrocyte-lineage cell clusters

|

mm3_OLI

I
: 9
S

EEEEEE ST oo N o & . S 2o _ug
SS %3 % % % 3B g g 9 9 2 8 3 % =223 %8
2 2222 2 2 % 2 2 2 2 2 25930
2 e R B ER
EE £ é g‘:i é £ £ £ £ £ <
a a a a
S g g g
2 £ 85 S ew oy 28588 e o g
©c ©o o© o © © o © ©c ©o o o o c o o
Single cell Single nucleus Single nucleus Bulk, Inmunopanning
17-18 GW 20-49 yrs 40-65 yrs 17-20 GW, 8-63 yrs
GM GM, other GM, other GM
251 1,217 702 NA

(OPC1-5 and all oligodendrocytes, see Fig. 5) from marmoset and multiple sub-
clusters of oligodendrocyte-lineage cells in zebrafish (dr), mouse (mm), and human
(hs). d.p.f. days post fertilization, P postnatal day, GW gestational weeks. ¢ Scatter
plot showing the ratio of r* between OPC2 and OPCl1 (left) and OPC3 and OPC1
(right). OPC1 and OPC2 are similar to one another and to OPC found in other
species. WM-OPC (OPC3) is a distinct subcluster, in general showing lower simi-
larity with previously defined clusters compared to GM-OPC (OPC1), though it is
relatively more similar to human than mouse or zebrafish OPC.

resident cells in primates, and specifically that WM-OPC acquired
additional features in response to their intercellular microenviron-
ment. Testing this hypothesis and determining whether our observa-
tions translate to actual differences in stimulus responses in health and
disease requires further experimental study.

To understand how marmoset OPC subclusters compare to those
from other species, we reanalyzed data from prior studies®**** and
performed a Pearson’s correlation analysis (Fig. 2c and Supplementary
Figs. 22-24). Consistent with what has been reported for OPC derived
from the adult human brain, we did not observe a separate cycling OPC
cluster (TOP2A*) in adult marmoset brain, as has been reported for
OPC derived from zebrafish, adult mouse, and developing human
cortex (Supplementary Figs. 22, 23). Instead, cells expressing S and G2/
M phase genes were dispersed across the OPC1-3 subclusters. OPC4,
however, was enriched with GOG1 genes (Supplementary Fig. 18d), i.e.,
they are quiescent cells**.

Prior to this comparison, we humanized gene names of each
species with one-to-one orthologs and only included genes that are
detected in all datasets, which might limit the depth of the com-
parison. However, we found agreement in oligodendrocyte-lineage
differentiation features across species (Fig. 4b): marmoset differ-
entiating OPC (OPCS5) and oligodendrocytes (OLI) correlate with
ENPP6'/MAG" oligodendrocyte-lineage cells in mouse (mml_2,
mm2_1, mm3_NFO, mm3_OLI) and human (hsl_4, hs2 2, hs3 3,
hs4_OLI), but less so in zebrafish (dr_3). Also, we observed con-
sistently larger differences between marmoset WM-OPC (OPC3) and
OPC from all other species analyzed. We quantified this observation
by comparing the fold-change of similarity between OPC sub-
clusters, measured as the ratio of r* values across clusters (Fig. 4c).

Although the underrepresentation of a marmoset WM-OPC-like
population in other datasets may partially be due to technical dif-
ferences, such as sampling site, it is also possible that OPC were
broadly undersampled in other datasets. As clustering resolution is
sensitive to cell counts in single-cell studies, low recovery number
of OPC (particularly those derived from humans) and/or lack of
inclusion of enough equivalent WM regions (especially in mice,
where there is little WM) might contribute to this observation.

The graded expression of ENPP6/MUSK and the succession of
transcription factors delineate the transcriptome trajectory of
oligodendrocytes

A total of 128,710 nuclei were included in the marmoset OLI class, from
which six subclusters (OLI1-6) were identified (Fig. 5 and Supple-
mentary Figs. 25-27). Different from other cell classes, marmoset oli-
godendrocytes were arranged into a continuous path in 2D dimension-
reduced space (Fig. 5a), in which nuclei with similar transcriptomes are
arranged as neighbors®. We found this to be similar to the patterns in
human***” and mouse®**°. In the following sections, we describe how
this trajectory cannot be parsimoniously explained by a unidirectional
path in oligodendrocyte-lineage development.

Based on mouse studies, differentiation-committed oligoden-
drocyte precursors are Pdgfra /Tns3' **, and the expression of Enpp6 is
a marker of newly forming oligodendrocytes®*®. Therefore, we
denoted as OLI1 the subcluster that is PDGFRA™/TNS3'/ENPP6"™" and
named the other OLI clusters (OLI2-6) consecutively (Supplementary
Fig. 25e). Instead of a clear GM-WM segregation, we found propor-
tional differences along the intermingled OLI subtypes across brain
regions. OLIl was lowest in “GM” (median abundance -0.5%),
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Fig. 5 | The transcriptome of oligodendrocytes lies on a spiral trajectory
flanked by ENPP6/MUSK gradient and marked by the succession of transcrip-
tion factors. a 2D UMAP plot of oligodendrocytes (OLI) colored by Level 2 sub-
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OLI1, denoted by ®). b Two viewing angles of a 3D UMAP plot of OLI subclusters and
corresponding expression of selected genes. ¢ The expression of MUSK is detected
in OLIG2" cells in adult marmoset brain by combined immunofluorescence staining
and fluorescent in situ hybridization (Hybridization chain reaction v3.0).

d Heatmap showing the expression of transcription factors (TF) across pseudotime.
Nuclei were grouped into 125 bins (columns, steps 1-125). The jitter plot above the
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three sets (Set 1: steps 0-60, present in OLI1-2, with Branch 1"&" and Branch 3'°%; Set
2: steps 60-80, present in OLI3, with Branch 2"e"; Set 3: steps 80-125, present in
OLI4-6, with Branch 1" and Branch 3"&"). e Box plots showing the distribution of
OLI subclusters across pseudotime with median annotated; n =11,977 (OLI1), 15,451
(OLI2), 18,623 (OLI3), 45,475 (OLI4), 30,691 (OLI5), 6,493 (OLI6) nuclei analyzed.
The lower and upper hinges of the box plot correspond to the 25" and 75" per-
centiles, whiskers extend from the hinges to maxima or minima at most 1.5 times
inter-quartile range. f The expression of TF with linearly decreasing (TRPSI) and
increasing (CREBS) expression. g The expression of TF with levels that peak at
various pseudotime points. The center of the error bands was defined by a locally
estimated scatter plot smoothing (LOESS) curve fit for each expression pattern; the
flanking gray bands indicate 95% confidence intervals.

compared to ~10% relative abundance in “WM” and “other” (Supple-
mentary Fig. 25c).

Based on this expression pattern, one might surmise that OLI1 are
the youngest and OLI6 the oldest oligodendrocytes; however, we
found them to be close in the space of the 2D UMAP projection, which
could indicate transcriptomic similarity; alternatively, a 2D projection
may not be sufficient to capture important aspects of the data.
Therefore, we pursued a 3D UMAP analysis of oligodendrocytes,
finding that the two ends are separated along a spiral pattern that was
also observed upon reanalysis of previously reported human***’
(Supplementary Figs. 28, 29) and mouse® (Supplementary Fig. 30)
oligodendrocyte transcriptomes. This spiral pattern was also captured
at the level of differentially expressed genes across oligodendrocyte

subclusters, most of which (XYLTI, TNS1, TNS3, MANICI, BTBDI6,
CCP110, CSF1, DOCKS, PAM, MUSK, GPM6A, and DPP10) were aligned
across species to label the overall developmental trajectory (Fig. 5b
and Supplementary Figs. 28-31).

Despite some discrepancy in the assignment of subcluster identity
among datasets, five major stages of oligodendrocyte-lineage cells are
widely accepted in the field to annotate the trajectory: OPC,
differentiation-committed oligodendrocyte precursors (COP), newly
formed oligodendrocytes (NFOL), myelin-forming oligodendrocytes
(MFOL), and mature oligodendrocytes (MOL). Interestingly, however,
ENPP6"e" oligodendrocytes are located at both ends of the trajectory in
mouse datasets (Supplementary Figs. 30, 31), but only at one end of the
trajectory in marmoset and human. This observation raises the
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question of whether the second ENPP6"e" population was selectively
lost in primates, or, alternatively, whether labeling the marmoset
ENPP6"" population as “youngest” is not valid.

To address this question, we compared the transcriptomes from a
bulk-RNA sequencing dataset from brain cells immunopanned with
surface markers® and two single-cell sequencing datasets in
mouse®**°, We found that the transcriptome of NFOL, as defined by
their cell surface marker (GalC*), was most closely correlated with that
of mature oligodendrocytes, as defined by single-cell analysis, and that
the pattern of correlation did not track with the ordering of those
oligodendrocyte subclusters in UMAP space (Supplementary Fig. 31).
These observations raise the possibility that the single-path
model of the differentiation trajectory of oligodendrocytes requires
modification.

Whereas ENPP6, a choline-supplying enzyme®, is enriched in
OLI1-3, OLI4-6 were selectively labeled by MUSK (muscle-associated
receptor tyrosine kinase) enrichment (Fig. 5b and Supplementary
Fig. 25e). The oligodendroglial expression of MUSK has not been
described; however, its functions in cholinergic signaling at the neu-
romuscular junction are known. With mechanism unknown, its
expression in the brain is thought to mediate cholinergic responses,
synaptic plasticity, and memory formation®’, suggesting that OLI4-6
might be a neuron activity-dependent population, consistent with
findings from studies of adaptive myelination®’. Moreover, it seems
likely that there is species disparity in the expression of MUSK in oli-
godendrocytes, for it was detected in both marmoset and human but
not in any mouse datasets. Although protein-level validation of MUSK
expression in tissue was unsuccessful, we found that MUSK was indeed
expressed by oligodendrocytes by fluorescent in situ hybridization:
MUSK'/OLIG2" double-labeled cells were found in both GM and WM of
marmoset brain, and there was no noticeable difference in MUSK level
per individual OLIG2" in GM compared to WM (Fig. 5c and Supple-
mentary Fig. 27d, e). Whether MUSK expression is unique to primates
or animals in specific phylogenetic branches, and the extent to which it
is developmentally regulated, require further investigation.

Next, we asked whether graded transcriptomic changes along
the spiral oligodendrocyte trajectory can be modeled by waves of
influence from within and/or directional stimuli from the environ-
ment. To address this, we performed a pseudotime analysis of
marmoset oligodendrocytes and mapped the expression of tran-
scription factors along pseudotime trajectories. We set ENPP6"e"
oligodendrocytes as the starting point for this analysis and visua-
lized gene expression dynamics along the pseudotime axis (Fig. 5b
and Supplementary Fig. 25d). Although the pattern of expression
dynamics agrees with the visual impression of gene expression
along the spiral 3D UMAP path, we found that molecular distances
from OLI4 to OLI5 and from OLI4 to OLI6 were similar, indicating
that OLI5 and OLI6 might develop in parallel rather than depen-
dently (Fig. 5d, e). We next mapped the expression pattern of
transcription factors along the trajectory and found that different
sets of regulator profiles were used by different subsets of oligo-
dendrocytes (Fig. 5d-g). Of all transcription factors examined, only
ELF2 and ETVS peaked in the middle stages of oligodendrocytes
(OLI2 and OLI3, respectively), whereas the other transcription fac-
tors were clustered either at the “early” (OLI1) or “late” (OLI4-6)
stages. A positive correlation between ELF2 and myelin was sup-
ported in a human snRNA-seq study, in which ELF2 was high in
control WM, normal-appearing WM, and remyelinated multiple
sclerosis lesions but lower in WM lesions (active, chronic active, and
chronic inactive)*. On the other hand, Etv$ can act as a suppressor
of oligodendrocyte differentiation, such that enforced expression
of EtvS in rat OPC decreased the production of MBP*
oligodendrocytes®. That ETVS expression peaks in OLI3 (Step
60-80, Fig. 5d) suggests that OLI3 might be a population that is
poised to further specialization upon appropriate signaling.

Cell types at the barriers of the CNS
In Level 1 analysis, we observed an intermingled distribution of nuclei
with shared transcriptomic features from the astrocyte (AST) and
vascular (VAS) classes. Therefore, we pooled these two classes for the
second round of quality control, which facilitated artifact imputation
before further cell class splitting. A total of 74,204 nuclei comprising
astrocytes and primary cell types (endothelial cells, meningeal cells,
and ependymal cells) present at the CNS barriers (blood-brain,
blood-CSF, and brain-CSF) remained after quality control (Supple-
mentary Fig. 32). As the neurovascular unit is mostly established
prenatally®’, we referred to a currently available ISH atlas of PO
marmoset?*> to confirm the localization of markers expressed by
these cell types. We matched the gross histological morphology of the
PO brain to the adult marmoset MRI atlas (Supplementary Fig. 33)**.
A total of 13,057 nuclei associated with CNS barriers comprised 11
VAS subclusters (Supplementary Figs. 34-36). Pericytes (Pericytel-2),
vascular endothelial cells (VE1-3), and vascular smooth muscle cells
(VSMC) agreed with a human vascular atlas® and were broadly con-
sistent across brain regions (Supplementary Figs. 34b, d). A relatively
higher percentage of ependymal cells, which form a permissive inter-
face between CSF and brain along the ventricular lining, was identified,
as expected, in tissue samples that line ventricles (tWM, pCC, Cd, and
¢SC). The distribution of vascular and leptomeningeal cells (VLMC1-4,
brain fibroblast-like cells) was variable and most highly detected in the
hindbrain (pons and cerebellum; Supplementary Fig. 34b).

The landscape of astrocytes can be mapped by GM-WM disparity
and by compartments of the neural tube

For astrocytes, a total of 61,147 nuclei were partitioned into 8 sub-
clusters (AST1-8; Fig. 6 and Supplementary Fig. 37). Similar to what
was identified for microglia and OPC classes, AST1 was found most
abundant in “GM,” and AST3 was enriched in “WM” (Fig. 6a and Sup-
plementary Fig. 37c). We noted that ALDHIL1 and GLI3 most effectively
label the whole lineage of astrocytes across regions, including Berg-
mann glia (AST8) in the cerebellum (Supplementary Fig. 38). By con-
trast, GM-astrocytes (AST1) were enriched with SLCIA2, and WM-
astrocytes (AST3) were enriched with GFAP and AQP4”” (Supplemen-
tary Fig. 38). As expected, gene module and GO analysis showed that
astrocytes are generally involved in sterol biosynthesis (Supplemen-
tary Fig. 39a and Supplementary Data 2), as they are the major cho-
lesterol producers in the brain. For GM-astrocytes (AST1), terms
related to neurotransmitter secretion and nervous system develop-
ment were enriched. WM-astrocytes (AST3) were enriched with terms
related to cell migration, intracellular signaling transduction, and
morphogenesis (Supplementary Fig. 39b, c).

In “WM” samples, different profiles of astrocyte subtypes were
observed; for example, AST4 and AST5 were enriched in the pCC and
OpT but not in other WM areas, similar to what was found in Thal, LGN,
MB, Pons, and ¢SC (Fig. 6a). Moreover, GFAP* astrocytes greatly varied
in density, size, and shape across the brain (Fig. 6b-d). This agrees with
what has been described in the human brain®, specifically that pro-
toplasmic astrocytes are primarily found in the cortex, whereas WM-
astrocytes are fibrous in morphology (Fig. 6b). The number and
dimension of GFAP* cells are diverse across cortical layers, tissue type,
and even WM areas. These results lead to a prediction that the brain’s
astroglial response to stimuli may be heterogeneous even across WM
areas (Fig. 6b-d).

Similar to what has been described in a mouse brain cell atlas*™, we
found that grouping tissue by developmental category together with
WM-GM disparity most effectively describes astrocyte segregation
(Fig. 6e and Supplementary Fig. 37a). This observation led us to
investigate further the effect of local neural tube patterning signals in
defining astrocyte subclusters and whether these signals also affect
other cell types in the same region. Therefore, we examined the
expression of patterning genes along the anterior-posterior axis across

40
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Fig. 6 | Neural tube boundary-restricted astrocytes persist into adulthood.

a UMAP plot visualization of astrocytes (AST) colored by Level 2 subclustering and
split by tissue type. b The expression of GFAP in a mid-coronal section of the
marmoset brain. Intense PLP1 labeling demarcates the white matter. Enlarged areas
are boxed and numbered on the 1x image (top left panel). The morphology of
GFAP" cells across tissue types was extracted by image processing (Method). The
experiment was repeated independently three times with similar results. ¢ The
distribution and morphology of GFAP* cells along layers of cortex and adjacent
white matter. The experiment was repeated independently three times with similar
results. d The expression of GFAP in the occipital lobe and cerebellum; nuclei are
stained with hematoxylin. Enlarged areas are boxed and numbered on the 1x image.
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The experiment was repeated independently three times with similar results.

e UMAP plot visualization of astrocytes colored by tissue type and developmental
category (left). Schematic illustration of the expression of patterning genes along
the anterior-posterior axis of the neural tube during development (right).

f Heatmap showing the expression of selected patterning genes in Level 1 classes,
split by sampling site. The sampling sites are ordered approximately along the
anterior-posterior axis of the neural tube during development, from left to right;
the genes enriched along the same axis are ordered from top to bottom. AST
subclusters are grouped based on the expression similarity of these patterning
genes, corresponding to the developmental origins of the sampling sites.

cell classes and tissue types (Fig. 6e, f). We found that the expression of
patterning genes across brain regions was grossly preserved across cell
types, with some interesting exceptions. In the telencephalon, all cell
classes in cortical GM expressed high levels of patterning genes that
were most prominently detected in the forebrain (FEZF2, EMX1, FOXGI,
DLX1, SHH, and DLX5). Caudate (enriched with S/X3) and hippocampus,

though belonging to telencephalon gray (Supplementary Fig. 37a),
have mostly lost the expression of forebrain patterning genes (Fig. 6f).
Similarly, most WM cells appeared to have lost this specification,
except for some FEZF2 and FOXGI expression in astrocytes and neu-
rons. Cells in the posterior corpus callosum had patterning gene
expression similar to that observed in the thalamus, LGN, and midbrain
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(WNT3, OTX2, GBX2, LHX9, and ENI). EN2 was enriched in the cere-
bellum, but hindbrain patterning genes (HOX genes) were high in pons,
cervical spinal cord, and sporadically in the optic tract.

In conclusion, we observed that the transcriptomes of WM
cells seem to deviate from the profile of forebrain patterning.
This forebrain, midbrain, and hindbrain specification was pre-
served prominently in astrocytes and indeed determined their
identity as distinct AST subclusters (Fig. 6f). This suggests that
heterogeneity in developmental origin might play a role in sub-
type specialization in addition to GM-WM disparity in diversifying
astrocytes.

GM-glia share regulatory pathways, and WM-glia interact with
other resident cells more than GM-glia

The presence of gray-white matter segregation within some glial cell
types, together with the observation of transcriptional similarity across
glia within tissue types, led us to hypothesize that there might be reg-
ulatory programs that are shared by resident cells within the same
microenvironment to execute intercellular functions properly. We rea-
soned that the similarity of enriched gene modules among resident glia
might be due to the activation of common transcription factors. To
explore this possibility, we extracted and compared differentially
expressed transcription factors between matching GM-/WM-glia pairs
(MIC1/MIC3, OPC1/OPC3, and AST1/AST3). We found greater overlap in
differentially enriched transcription factors in GM-glia (15 overlapping
transcription factors) than in WM-glia (three overlapping transcription
factors). Interestingly, six transcription factors were shared across
all GM-glia, whereas no transcription factors were shared across all WM-
glia. GM-glia transcription factors (EGRI, HLF, PEG3, MYTIL, HIVEP2, and

BHLHE40) are known to restrict RNA biosynthesis, potentially explain-
ing the observation that GM-glia are low in RNA features compared to
their WM counterparts (Fig. 7a and Supplementary Fig. 40a).

Our observation of top-ranked GO terms that were similar among
GM-glia but not among WM-glia led us to seek a better method to
quantify this pattern systematically. We compared the similarity of
terms by calculating the Jaccard index between module pairs across
cell classes and visualizing their similarity as networks. Conformingly,
GO terms were more similar among gene modules enriched in GM-glia
than other gene modules, and regulatory programs in GM-microglia
showed the highest similarity with those in GM-OPC (Fig. 7b and
Supplementary Fig. 40b).

We reasoned that this cross-cell-type enrichment of similar reg-
ulatory programs might be achieved by close communication between
neighboring cells; therefore, we modeled ligand-receptor interactions
to test this hypothesis. To achieve this, we employed NicheNet
analysis®, which curates known ligand-receptor and receptor-target
relationships and ranks them based on the level of support in pub-
lished literature. We performed this analysis taking the subtypes of
microglia, OPC, and astrocytes that were primarily enriched in “GM”
(MIC1, OPC1, and AST1) and “WM” (MIC3, OPC3, and AST3) as “recei-
vers” and other cells in the same tissue type as “senders” (Fig. 8a). We
consistently found more, and more unique, ligand-target pairsin “WM”
than in “GM,” and these were generated by a wider variety of sender
types (Fig. 8b, ¢, Supplementary Fig. 41, and Supplementary Data 3). In
“WM,” endothelial cells and astrocytes were the most frequently
observed additional sender types (Supplementary Fig. 41f, i, I). Astro-
cytes (4830 pairs) formed more ligand-target pairs than microglia
(2828 pairs) or OPC (1813 pairs). Among ligand-target pairs found
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shared in “GM” and “WM” (1753 for microglia, 1236 for OPC, 3015 for
astrocytes), certain senders were represented disproportionately to
their relative abundance (Figs. 1f, 3¢, 4a and Supplementary Fig. 37c),
with microglia and OPC constituting the most common top-ranked
senders (Supplementary Fig. 42). This is consistent with prior reports
that microglia and OPC can actively survey their microenvironments in
both physiological and pathological conditions®®®,

GM- and WM-glia differentially contribute to neurological
disorders

Finally, we explored the possible functional significance of our
homeostatically defined subclusters as they might relate to patholo-
gical conditions. We reasoned that by examining the expression of
known disease-associated genes in our healthy marmoset tran-
scriptomic atlas, we might identify previously overlooked cellular
contributors to human neurological disease. Based on manually
curated information in the Ingenuity Pathway Analysis (IPA) database
(Supplementary Data 4), we sorted genes into lists, ordered them
based on the phenotypic similarity between disorders, and displayed
the number of candidate genes in each list that were unique or shared
across disorders; lists with <10 candidate genes were dropped for
simplicity (Fig. 9a). We examined the cellular enrichment of genes
associated with a spectrum of disorders using expression-weighted
cell-type enrichment (EWCE) analysis®>. We calculated fold-change,
enrichment probability, and significance by comparison to gene
expression in 100,000 randomly selected lists of genes with matching
lengths from the background (Method).

Genes associated with an autism spectrum disorder or intellectual
disability were enriched in both excitatory and inhibitory neurons®*,
and there was a remarkably similar profile for seizures and schizo-
phrenia (Supplementary Fig. 43). Genes related to migraine were also
overrepresented in neuronal subclusters and notably absent from
vascular subclusters. Astrocyte contribution was highlighted, in addi-
tion to the involvement of pyramidal neurons, in Huntington’s disease,
independently supporting reports of glial involvement in its
pathogenesis®. In agreement with the view that neurovascular cou-
pling plays a role in neurological disorders, a gene list that is uniquely
shared by organic mental disorder, CNS tumor, and Huntington’s
disease (List.40) highlights the contribution of Pericyte2 (Supple-
mentary Fig. 43). Although it affects the peripheral nervous system
rather than the CNS, Charcot-Marie-Tooth disease mapped to oligo-
dendrocytes, possibly due to shared gene expression between central

and peripheral myelinating cells. Interestingly, we observed the
potential contribution of a subset of oligodendrocytes (OLI4-6) to
parkinsonism, consistent with recent reports from postmortem brain
transcriptomic data®.

Consistent with the microenvironment specialization of glia
reported here, we found examples in which genes associated with an
organic mental disorder were differentially expressed in GM-microglia
(MIC1) and GM-astrocytes (AST1) but not in their WM counterparts.
Genes associated with CNS tumor were enriched in WM-microglia
(MIC3) and WM-OPC (OPC3), but surprisingly not in astrocytes. By
contrast, all microglia subtypes (MIC1-MIC3), but not other cell types,
appear to contribute to multiple sclerosis pathogenesis (Fig. 9b),
consistent with results from genome-wide association studies®.
Interestingly, genes unique to CNS tumor and encephalitis (List.21) are
differentially enriched in MIC2, a less dominant GM-microglia that is
present in various proportions in microglia sampled from “WM”
(Fig. 3¢ and Supplementary Fig. 14a). Together, these results support
our contention that there is transcriptome diversity among GM- and
WM-glia, and that these variations are significant enough for specific
subtypes to be predicted to contribute differentially to various neu-
rological disorders.

Discussion

We have provided a resource and initial analysis for each major cell
class across 19 CNS tissue types. We observed the greatest GM-WM
spatial segregation in subclusters of microglia, OPC, and astrocytes.
GM-glia are generally naive, protoplasmic, and enriched in GO terms
related to neuronal functioning, whereas WM-glia are more active,
fibrous, and enriched in GO terms related to morphogenesis and sig-
naling dynamics. We accumulated some evidence that WM-glia have
accrued additional features, are further advanced in the program of
specialization, and are more interactive than their GM counterparts.
This atlas, therefore, serves as a bridge between rodent and human
data that may prove useful for the understanding of the cellular and
molecular basis of human neurological disorders.

Although our study was carefully designed and executed, and
rigorous quality control steps were implemented at every stage of
the experimental and analysis pipeline, technical variation and arti-
facts remain intermingled with biological effects. For example, spinal
cord samples were outside the region covered by the MRI atlas, and
results were derived from two libraries prepared with 10x v2 and 1
library with 10x v3 chemistry (fewer genes were recovered using v2
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annotations are inferred and might change in the future. We were
therefore relatively conservative in clustering and defining cell types,
and it is likely that further subclustering would have yielded more
distinct cell types.

We defined cell types and linked their molecular properties to
functions with more than one method, including pathway analysis,
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Fig. 9 | GM- and WM-glia diverge in disease contribution. a Bar and UpSet plots
showing the overlap of genes associated with various neurological disorders as
defined in the Ingenuity Pathway Analysis (IPA) database. The number of genes is
listed next to the name of the disorder (bottom panel, y axis label). The number of
intersecting genes between indicated disorders (solid black dot and line), but not
shared by any other disorders (empty gray dot), is labeled and shown on the bar
graph (top panel). b Bar graph showing standard deviation (top) and fold-change
(bottom) of the enrichment probability for neurological disorder-associated genes

calculated by expression-weighted cell-type enrichment (EWCE) analysis, after
bootstrapping. Bar color represents the Level 1 cell class of origin. Genes annotated
in the IPA database associated with an organic mental disorder, CNS tumor, mul-
tiple sclerosis, and List.21 (27 genes, shared by encephalitis and CNS tumor but not
by other neurological disorders) were analyzed and plotted. The significance of
cell-type enrichment is denoted after Benjamini-Hochberg correction, *q < 0.05
and °g<0.1.

disease association mapping, and morphological analysis; however,
electrophysiological features remain unlinked. With respect to sam-
pling, although we profiled as many nuclei as possible in each round,
often <1% of nuclei were studied from each region (Supplementary
Fig. 1le), meaning that rare subclusters were probably missed. Addi-
tionally, given finite resources, we elected to sample the brain richly
rather than to include samples from additional marmosets, limiting,
for example, our ability to answer age-, sex-, or left-right asymmetry-
related questions. Instead, we performed associational analysis and
first highlighted shared features across coarse tissue types. Further
analysis in combination with direct experimental tissue-level validation
is necessary to assess region-specific phenotypes in each fine
structure.

These limitations aside, the protocol described here is easily
adapted to other settings and allows nuclei to be mapped onto rela-
tively small regions to increase reproducibility and aid future valida-
tion studies. Our analysis, therefore, provides a framework for
understanding the diversity of cell types in the marmoset brain,
allowing us to form actionable hypotheses and laying the groundwork
for future studies.

Methods

Animals

Our CNS marmoset cell atlas was generated from two healthy, 5.5-year-
old common marmosets (Callithrix jacchus), one female (CJHO1) and
one male (CJRO2). Staining was done using 4 healthy 4-6-year-old
marmosets, two females (CJaTO1 and CJav02) and two males (CJaB03
and CJaD04). All marmosets were housed and handled with the
approval of the NINDS/NIDCD/NCCIH Animal Care and Use Committee
(ACUC). On the day of imaging, marmosets were anesthetized by
intramuscular injection of 10 mg/kg ketamine, intubated, and ventilated
with a mixture of isoflurane and oxygen during in vivo MRI scans. MRI
was performed on a 7 T Bruker scanner to generate a series of proton
density-weighted images with a resolution of 0.15x 0.15x1mm?® per
voxel and a matrix of 213 x 160 x 36 per session®®, The images were used
for volume reconstruction and anatomy identification. The volume was
then used to create a custom-made brain holder by 3D printing (Ulti-
maker 2") for each marmoset to guide ex vivo tissue sampling®. After
each in vivo scan section, marmosets were weaned from 2% isoflurane,
recovered with a lactated ringer injection subcutaneously, and returned
to their original housing.

Single-nucleus RNA sequencing (snRNA-seq)

Tissue dissection for nuclei isolation. On the day of tissue harvest,
marmosets were deeply anesthetized with 5% isoflurane until any
visible signs of breathing were no longer detected. Animals were
transcardially perfused with ice-cold artificial cerebrospinal fluid
(aCSF) for 5 min with a pump. Brains were removed from the skull and
submerged into ice-cold aCSF, and after the removal of meninges
within the aCSF solution, were positioned in a custom-designed brain
holder within 10 min post-perfusion. The brain was sectioned at 3 mm
into 12-13 slabs in one step with a homemade blade-separator set in
the aCSF solution. Each brain slab was transferred into a 6-well plate,
submerged into RNAlater (RNAlater™ Stabilization Solution, AM7021,
Invitrogen) with a homemade brain trap, and stored at 4 °C overnight.
The following day, brain slabs were positioned in 25 x 20 x 5 mm molds

(Tissue-Tek® Cryomold®, 4557, Sakura Finetek) on ice to facilitate
target sampling. Slabs were matched to MRI for each animal, and tissue
annotation for gray** and white matter® was informed by marmoset 3D
MRI atlases V1 and V2. A cylinder of tissue 2 mm in diameter and 3 mm
in height for each region (Fig. 1b and Supplementary Fig. 1) was col-
lected with a tissue punch (EMS-core sampling tool, 69039-20, EMS).
There were five white matter samples from temporal and parietal lobes
that did not exactly match the two animals, however, they were paired
in lobes of the brain and showed no significant differences in sub-
sequent analysis (Fig. 1b, SS05, SS06, and SS08). The cylinders were
ejected into PCR tubes filled with 100 L of RNAlater and stored at
-80°C. The quality of RNAlater-preserved tissue was assessed by
measuring RNA Integrity Number (RIN) on the Agilent 2100 Bioanaly-
zer (G2939BA, Agilent). Bulk RNA was isolated with TRIzol™ Reagent
(15596026, Invitrogen) and measured with Agilent RNA 6000 Pico Kit
(5067-1513, Agilent); samples with RIN >8.5 were used in the study.

Single-nucleus dissociation. Nuclei preparation was carried out as
described’®, with minor modifications. Briefly, on the day of dissocia-
tion, tissue samples were thawed on ice, removed from the solution,
dabbed with Kimwipes to remove residual RNAlater, and placed in a
1 mL douncer tube (Dounce Tissue Grinder, 357538, Wheaton). Each
tissue was homogenized in 500 pL of lysis buffer containing 400 units
of RNase inhibitor (RNaseOUT Recombinant Ribonuclease Inhibitor,
10777-019, Invitrogen) and 0.1% Triton-X100 in low sucrose buffer
(0.32M sucrose, 10 mM HEPES, 5mM CaCl,, 3mM MgAc, 0.1mM
EDTA, and 1mM DTT in ddH,0, pHS8) with loose pestle 25 times and
tight pestle ten times. The homogenate was filtered through a 40-um
mesh (Falcon® 40 um Cell Strainer, 352340, Corning) to a 50-mL Falcon
tube on ice. An additional 5 mL of low sucrose buffer was used to rinse
the douncer tube and cell strainer. The filtered homogenate was fur-
ther mixed with a handheld homogenizer (VWR® 200 Homogenizer) at
a speed of ~1000 rpm to brake nuclei clumps for 5s. After homo-
genization, a serological pipet filled with 12 mL of high sucrose buffer
(1M sucrose, 10 mM HEPES, 3 mM MgAc, and 1mM DTT in ddH,O0,
pH8) was placed underneath the lysate and disconnected from the
pipettor, and the buffer was released from the serological pipette by
gravity and set on ice. When most of the high sucrose buffer was
released to form a density layer underneath the homogenate, the
serological pipet was retrieved along the wall of the Falcon tube gently,
without disturbing the low-high sucrose interface. The Falcon tube was
capped and placed in a swing bucket to be centrifuged at 3200 x g for
30 min at 4 °C. At the end of a spin, the supernatant was decanted
quickly without tabbing, and 1 mL of resuspension buffer (0.02% BSA
in 1X PBS, pH7.4) containing 200 units of RNase inhibitor was added
to the Falcon tube to rinse the nuclei. Slow pipetting was employed to
resuspend nuclei along the Falcon tube wall below the 5-mL mark to
preserve nuclei integrity. Specifically, nuclei were rinsed off the wall in
courses of 2 s per trituration for 20 times total per tube. The Falcon
tube was then capped and spun at 3200xg for 10 min at 4 °C. At the end
of spin, the supernatant was removed by gently tabbing the tube until
no visible liquid drop was left behind, and 200 pL of resuspension
buffer was added to each sample to collect the nuclei. The nuclei
suspension was filtered through a 35-um mesh (Cell Strainer Snap Cap,
352235, Corning) twice and counted on a hemocytometer by trypan
blue staining. During counting, the size and quantity of myelin and
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other debris were visually inspected under the scope, and the sus-
pension was filtered 1-3 more times through the 35-pm mesh if
necessary. Only round and dark-blue stained nuclei were considered of
good quality and included in the final count.

cDNA library and sequencing. Most single-nucleus libraries (38) were
prepared using 10x Genomics Chromium Single Cell 3’ Library & Gel
Bead Kit v3, though four libraries were done in v2 chemistry following
the manufacturer’s protocol. Briefly, nuclei suspensions were prepared
as described above and diluted with resuspension buffer to achieve the
desired concentration, and then loaded into Chromium Controller to
generate Gel-beads in Emulsion (GEM). For both cDNA amplification
and library sample index PCR, 12 cycles were used. Most libraries were
sequenced on Illumina Novaseq S2, but some used Illumina Miseq,
Hiseq 2500, or Hiseq 4000, according to the manufacturer’s protocol;
see Supplementary Fig. 2 and Supplementary Data 1 for details.

Alignment. The raw sequencing reads were aligned to a marmoset
genome assembly, ASM275486v1 (GCA_002754865.1). To build a
reference package suitable for analyzing both unspliced pre-mRNA
and mature mRNA in the nuclei, as well as to include sequences of
mitochondrial genome, marmoset DNA sequence (FASTA) and anno-
tation (GTF) files were acquired from the Ensembl release-95 and
modified as follows. The complete mitochondrial sequence
(NC_025586.1, GenBank) and its annotation” were manually added to
the FASTA and GTF files. Next, a pre-mRNA GTF was made by replacing
“transcript” with “exon” as the feature-type entry in the original GTF
before making a reference package with CellRanger software (v3.0.2,
10x Genomics). This custom-built reference package was then used in
CellRanger (version 3.1.0, 10x Genomics) to align sequencing reads for
all samples. The option to estimate cell number automatically was used
for most of the samples, unless otherwise specified (see Supplemen-
tary Data 1 for details). A filtered cell barcode-to-gene feature matrix
was generated from the software and used for downstream analysis
(Supplementary Fig. 2a).

Preprocessing and quality control. The matrix was loaded to create
an object in Seurat v32 Cells with <200 genes, >5000 genes, or >5% of
counts mapped to the mitochondrial genome were excluded. Genes
observed in <5 cells were excluded. The filtered raw count matrix was
then log normalized (In(counts x100,000 +1)) within each cell and
scaled to account for differences in sequencing depth with Seurat.
Next, DoubletFinder* was used to estimate and remove putative
doublets to mitigate technical confounding artifacts in droplet-based
sequencing data analysis. The top 3000 variable genes calculated by
Seurat were used in linear dimension reduction (principal components
analysis, PCA), and the top 30 principal components (PC) were used for
clustering at low resolution (parameter=0.4) to define coarse cell
types. These unsupervised clusters were used to provide a quick
cluster annotation for homotypic doublet probability modeling in
DoubletFinder. The doublet rate was estimated by fitting a linear
equation over a multiplet rate table provided by 10x Genomics. The
rate = (0.0008 x cell.number + 0.0527)/100) was used to calculate a
Poisson distribution with and without homotypic doublet proportion
to generate low confidence (DF.found.l) and high confidence
(DF.found.2) doublet annotation. Unless otherwise specified, pN=
0.25, pK = 0.005, and automatic doublet removal based on DF.found.2
annotation were used, as the first line of screening.

In parallel, SoupX" was used for ambient RNA background cor-
rection. Taken from the output of the 10x Genomics pipeline (raw_-
feature_bc_matrix), the ambient RNA from empty droplets that
contained <10 unique molecular identifiers (UMI) were profiled, and
the “soup” contamination fraction was calculated for each cluster.
Given that the nuclear transcriptome was profiled, genes that mapped
to the mitochondrial genome could be considered as a marker of

ambient input. Specifically, the top mitochondrial genes (species with
>1000 accumulated counts across profiled empty droplets) were used
to estimate the global contamination fraction and adjust the raw count
matrix. Next, the cell barcode that passed the DoubletFinder was used
as an index to subset the SoupX-corrected matrix to generate a new
matrix as our downstream input (Supplementary Fig. 2a). For indivi-
dual samples, a Seurat object was created, and the index labels
(ILO1_uniquelD, ILO2_species, ILO3_source, ILO4_sex, ILO5_ageDays,
ILO6_ tissue.l (coarse category), ILO6 tissue.2 (developmental cate-
gory), ILO6 tissue.3 (fine category), ILO7 location, ILO8 condition,
ILO9_illumina, IL10_chemistry, IL11_batch, IL12_LMinDays, IL13_LMax-
Days, IL14_dataset, IL15_annotation) were added to the metadata as cell
attributes. For each sample, 90% of nuclei were randomly selected,
then all 42 samples were merged for downstream comparison. The
remaining 10% of nuclei were set aside for classification assessment
and validation (Supplementary Fig. 8).

Clustering and visualization. Clustering was performed using Seurat,
iteratively with different parameter sets, to understand the data
structure. A merged Seurat object was created from the 42 samples,
and the aggregated raw count matrix was log-normalized and scaled
again as stated above.

Preliminary exploratory data analysis. The top 3000 variable genes
calculated by Seurat were used in PCA. In the first round of clustering
and visualization, 100 PC were computed and used for Harmony (v1)"
to integrate different samples, specifically variability over the ILO1 u-
niquelD attribute, with default setting (theta=2, lambda=1, sigma=
0.1). The UMAP space and nearest-neighbor analyses were calculated
on the top 50 Harmony embeddings with resolutions from 0.4-1.2. Cell
barcodes of a cluster of nuclei annotated as “low quality,” which resi-
ded at the center of the 2D UMAP (H50), were recorded; these nuclei
had a high percentage of reads mapped to the mitochondrial genome,
low RNA counts and features, and/or expressed genes that mapped to
multiple canonical markers of different cell types. No single set of
parameters can adequately separate ~-500K nuclei to identify sub-
clusters from all major cell types simultaneously, as either over-
splitting for low complexity cells (e.g., glia) or under-splitting for high
complexity cells (e.g., neurons) would result. Therefore, a stepwise
clustering approach was used, whereby major cell classes (neurons and
oligodendrocytes, etc.) were first identified and then divided into
subclusters for each class (Fig. 2).

Level 1 quality control and analysis. To divide nuclei into classes and
facilitate artifact identification, nuclei were first classified using a set of
parameters that do not highlight granular detail. In this round of
clustering, only 50 PC for Harmony were computed to perform linear
correction over ILO1_uniquelD, as the elbow plot from the preliminary
analysis showing the standard deviation stopped visually decreasing
after the top 50 PC. The top five Harmony-corrected embeddings (H5)
were used for Seurat to learn the UMAP and find cell classes at a low
resolution (0.2). Canonical cell-type markers (PTPRC for immune cells,
PDGFRA for OPC, MAG for oligodendrocytes, GFAP and SLCIA2 for
astrocytes, LEPR and CEMIP for vasculature and meningeal cells, and
CNTNS and NRGI for neurons) annotated 6 of the classes unambigu-
ously. One cluster in the middle of the H5 UMAP had mixed expression
of canonical markers, which suggested an artifact. The “low quality”
cell barcodes that were found from the H50 condition (defined above)
were overlaid on the H5 UMAP, which exclusively highlighted the
putative artifact cluster. These nuclei were removed from further
analysis, although the original UMAP embeddings were maintained for
plotting purposes (Fig. 1e and Supplementary Fig. 4).

Level 2 quality control and analysis. Nuclei that passed Level 1 QC
were divided into five classes (MIC, OPC, OLI, VAS/AST, NEU) based on
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the H5 UMAP result. Astrocytes and vasculature/meningeal cells were
pooled into a single class prior to subclustering to facilitate artifact
identification (Fig. 2b). Shared features in this class of cells are
potentially explainable by their close association at CNS barriers
(blood-CSF, blood-brain, and CSF-brain interfaces). For each class,
log-normalization and scaling were repeated from the divided raw
count matrix, and the top 3000 variable genes were used for 50 PC
computation, Harmony correction over ILO1_uniquelD, UMAP learn-
ing, and clustering, as described above. The clustering resolution was
iteratively increased from low to high (0-1.2), and clustering stability
was tracked with clustree (v0.4.3). NEU Level 2 clustering stability was
also tracked by calculating the Jaccard index at resolution 2 (res.2,
Supplementary Fig. 13a, b)*’. Aided by the branch visualization pro-
vided by clustree, a tentative resolution that was relatively stable was
selected, then differentially expressed gene (DEG) analysis on the
clusters found with this parameter set was performed. The expression
patterns of the top-expressed genes for each cluster within and across
classes were checked, and artifact clusters were manually imputed.
Doublets tended to form small distinct clusters in the UMAP plots that
branched early in the clustering tree analysis with a low splitting
resolution, had mixed canonical marker-gene expression, and had
similar expression patterns to cells in other partitions; thus, these
doublets could be easily spotted and removed. For putative doublets
within each class, additional rounds of DEG analysis were performed as
necessary. Each time nuclei were removed, basic normalization, scal-
ing, Harmony, and UMAP learning were repeated. To control for over-
splitting, for clusters that appeared to be a single pile in the 2D UMAP
space but were annotated into >1 cluster, additional rounds of DEG
analysis were performed to see if binary labeling markers could be
found. In addition, clustering was projected onto a 3D UMAP space to
ensure effects were not masked due to overcrowding in 2D. This
strategy helped to further elucidate cluster associations, aid decision-
making with respect to groups of clusters that should be tested fur-
ther, and spot potential gradient changes among clusters. If unique
and/or binary patterns could not be found in the current splitting
resolution after these steps were performed, a step lower in resolution
on the clustering tree was examined, and the analysis was repeated.
The following compound naming convention to label the 87 sub-
clusters was used: general category in numeric order, major tissue or
location contributor for each cell type, and binary marker combination
where applicable.

Preparation of objects for cross-cluster analysis. Once the sub-
clustering and UMAP embedding were finalized for each cell class,
several annotated objects were created to facilitate downstream ana-
lysis and comparison. To enable cluster overview, compare global and
local gene expression, and classify the 10% set-aside data, an object
containing all 87 subclusters and 50 nuclei per cluster was prepared by
random sampling (C50 object). For white and gray matter comparison,
4000 nuclei were randomly sampled from each tissue type and pooled
into two objects (Fig. 2e), WM (containing 24,000 nuclei, including
fWM, tWM, pWM, aCC, pCC, and OpT) and GM (containing 20,000
nuclei, including fCTX, tCTX, pCTX, oCTX, and CgG).

Data visualization. Unless otherwise specified, gene expression values
in the dot plots and heatmaps were averaged, mean-centered, and z-
score-scaled (from —1.5 to +1.5, to which values below or above these
levels were assigned). Dot size indicates the percentage of nuclei in the
subcluster in which the gene was detected. Among the nuclei in which
a given gene was detected, the expression level was mean-centered
and scaled. For aggregated gene lists or gene module expression, a
relative color scheme was used to indicate the level of expression, from
low to high. For dendrogram creation, the top 50 enriched genes cal-
culated in Level 1 analysis were used to calculate Euclidean distances,
using “hclust(dist())” functions in R. To aid cluster tracking, branches

of the dendrogram were reordered and colored to show the origin of
cell classes while retaining the tree structure.

Pseudotime analysis

Monocle3 (v0.2.0) was used to construct nuclei trajectories based on
transcriptomic distance”. The OLI Seurat object with finalized UMAP
from Level 2 analysis was converted to a Monocle object. All index
labels and cell attributes, cluster assignment, and UMAP embeddings
were transferred. A partition was then assigned for each nucleus by
the cluster_cells() function, and a principal graph was fit within each
partition by the learn_graph() function. From the principal graph,
Monocle3 defined a unitless transcriptome progression along the
learned trajectory as “pseudotime.” The distance between two given
points along the trajectory path indicates the amount of expression
change required to connect the ends. The starting point of pseudo-
time is self-defined by the order_cells() function. Based on prior
knowledge*®, the node at the side of the ENPP6"¢" oligodendrocyte
cluster was selected as the starting point. To visualize gene expres-
sion dynamics along pseudotime, the plot_genes_in_pseudotime()
function was used to fit a spline using the following trend formula: “~
sm.ns(Pseudotime, df=3)". The calculated pseudotime value was
extracted for further analysis as indicated in the figure legend
(cds@principal_graph_aux@listData[[“UMAP”]][[“pseudotime”]]).

Gene module analysis

Monocle3 was used to find and group genes by similarity along the
learned principal graph?. Genes that passed Moran’s / statistic spatial
test (<5% FDR) over the k-nearest-neighbor graph (Knn, k=25), or
trajectory learned principal graph (PG) by Monocle3 graph_test()
function, were used for module assignment. Genes were grouped into
modules identified in each type of graph test by the find_gene_mo-
dules() function with a resolution of 107, The list of genes of each
module was then aggregated and added back to the Seurat object
through the AddModuleScore() function and visualized in Seurat v3.
Genes that mapped to the mitochondrial genome were dropped
before performing gene ontology and pathway analysis. See Supple-
mentary Data 2 for the full list.

Gene ontology (GO) and pathway analysis

The list of genes from the selected modules and/or DEG, discovered as
stated above, were used for various pathway analysis. The GO analysis
for marmoset was performed by gprofiler2 (v0.1.9)” with the gost()
function. The database for “cjacchus” was used, electronic GO anno-
tations (IEA) were included, and g:SCS threshold was used for multiple
testing correction as suggested by gprofiler2. Three major sub-
ontologies—Molecular Function (MF), Biological Process (BP), and
Cellular Component (CC)—were included in the analysis. Additional
annotations from the KEGG and HP databases were included when
available. Terms that passed a significance cutoff of p=0.05 after
correction were filtered at the following criteria in case of over-
crowding. The parent terms were removed if child terms from the
same branch were present in the same list, and if the term had at least
one parent term in the database prioritized, as terms lower in each
branch are usually more specific and informative. For terms that pas-
sed filtering, the corrected p value and fold enrichment were plotted.
The fold enrichment was calculated as follows: (intersection_size/
query_size)/(term_size/effective_domain_size).

NicheNet ligand-receptor-target analysis

Potential intercellular communication in WM and GM was modeled
using nichenetr (v0.1.0)*° The cross-partition objects for WM and GM
generated as described above were used for this analysis (Fig. 2e).
Bioinformatic resources and protocols were modified from https://
github.com/saeyslab/nichenetr. Briefly, NicheNet studies intercellular
communication computationally by leveraging known ligand-to-
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receptor and receptor-to-target relationships in its database. It allows
the prediction of interactions between ligands expressed by “sender”
cells and receptors expressed by “receiver” cells, and models how
these interactions might drive gene expression changes in cells of
interests (target DEG in the receivers).

We hypothesized that differences between WM and GM might
partially explain tissue-type-specific subpopulations of microglia, OPC,
and astrocytes. Therefore, NicheNet was used to test if transcriptome
changes between subclusters could be explained by environmental
signals from nearby cells. WM and GM differentially enriched micro-
glia, OPC, and astrocyte subpopulations were defined as receivers in
each test, and DEG between MIC1 and MIC3, OPC1 and OPC3, and AST1
and AST3 were derived. DEG were filtered at adjusted p value (<0.05)
and absolute log (In) fold-change (>0.25). Potential senders were
defined from clusters with >50 nuclei in the same tissue type as each
receiver, and genes detected in >10% of the nuclei in a cluster were
kept for further analysis. Preconstructed databases were downloaded
for ligand_target martix [https://zenodo.org/record/3260758/files/
ligand_target_matrix.rds], ligand_receptor_database [https://zenodo.
org/record/3260758/files/Ir_network.rds], and weighted networks
[https://zenodo.org/record/3260758/files/weighted_networks.rds].
Gene names for these databases were built with human data, therefore
human genes with one-to-one orthologs were translated to marmoset
gene names with BioMart. The weighted ligand-receptor-target (LRT)
matrix was thereby constructed, with weighting factors implemented
so that informative data sources maximized prediction accuracy in the
final model. The list of sources used to build this database and the
method to calculate the weighted scores have been specified®. After
“expressed ligands” were defined for senders and “expressed recep-
tors” for receivers (>10% detection rate), the existence of ligand-target
pairs was established. The ligand-target pairs were ranked based on the
presence of the target genes (defined by the receptor-target database)
in the calculated DEG using the predict ligand_activities() function.
The filtered DEG present in the top 200 predicted target genes per
ligand were kept for further ligand-target analysis.

For visualization of this complicated intercellular interaction,
Circos plots were generated. First, the lists of ligand-target pairs in WM
and GM were compared and divided into three categories (GM, WM,
and shared), and a Venn diagram was generated for each type of
receiver (microglia, OPC, and astrocytes; Fig. 8c). The unique ligand-
target pairs for each environment were plotted in enlarged Circos
plots, and the shared ligand-target pairs in smaller Circos plots, for
categorical visual reference (Supplementary Fig. 41le, h, k, bottom
panels). The shared Circos plots were also enlarged to aid the visibility
of individual genes (Supplementary Fig. 42). Since any given ligand
might be expressed by >1 cell type, each ligand was assigned to the cell
cluster that ranks highest in the product of detection rate (%) and
expression level (z-score scaled). Since the probability is low for any
ligand to be assigned to a particular cell type with this strategy, it is
sufficient to map intercellular interaction qualitatively and categori-
cally (see Supplementary Data 4 for full report). The senders by Level 1
classes (MIC, OPC, OLI, AST, VAS, and NEU) were colored, and pie
charts tabulating the proportion of unique (Supplementary Fig. 41)
and shared (Supplementary Fig. 42) ligand-target pairs were gener-
ated. For each Circos plot, up to 100 weighted ligand-target interac-
tions were presented to limit overcrowding. For shared ligand-target
pairs, an inter-categorical agreement was calculated and presented in
Sankey diagrams using the networkD3 (v0.4) package.

Gene set enrichment analysis

Themes were collected from the following sources, after which the
aggregated score was calculated by Seurat v3 AddModuleScore()
function. Gene groups included ion channels, scavenger receptors
(SCAR), and histocompatibility complex (HLA) from the HUGO Gene
Nomenclature Committee (HGNC). Cell-cycle genes were pulled from

the built-in gene list in Seurat (cc.genes.updated.2019) for S and G2M
phases. Genes enriched in the GOG1 phase** and the list of human
transcription factors™ were informed by the literature. Neurological
disorder-associated genes were acquired from the database curated in
the Ingenuity Pathway Analysis (IPA) software. See Supplementary
Data 4 for the full gene lists.

Expression-weighted cell-type enrichment (EWCE) analysis
Cellular phenotypes of neurological disorders were calculated by
EWCE®. Briefly, the expression of a list of n genes associated with a
disease or disease category was compared with those in 100,000
randomly selected lists of n genes from the background. The propor-
tional expression of genes associated with each cell type was calcu-
lated to compute the probability of enrichment. Tested disease/
disease categories were: organic mental disorder, CNS tumor, cogni-
tive impairment, psychological disorder, autism spectrum disorder or
intellectual disability, Huntington's disease, Alzheimer's disease or
frontotemporal dementia, seizures, schizophrenia spectrum disorder,
encephalitis, cerebrovascular dysfunction, stroke, parkinsonism,
amyotrophic lateral sclerosis, multiple sclerosis, white matter
abnormality, migraine, Charcot-Marie-Tooth disease, abnormality of
meninges, and Zellweger syndrome. After Benjamini-Hochberg cor-
rection, the significance of cell-type enrichment was denoted with * for
g<0.05, and ° for g<0.1

Cross-cluster comparison and validation

Comparison between marmoset subclusters. The C50 object was
used to assess transcriptomic similarity across all 87 subcluster pairs.
The expression levels of all genes within each subcluster were nor-
malized and averaged before calculating the linear correlation. The
Im() function was used in R, and the adjusted r* values were extracted
for heatmap plotting. Similarly, the transcriptomic distances between
all subcluster pairs were assessed by counting the number of DEG,
both increased and decreased, between them. DEG were filtered by
their log (In) fold-change (>0.25) and detection frequency (detected in
>10% of nuclei).

Comparison between clusters from different species. Deposited
data from zebrafish, mouse, and humans (Table 1) were reanalyzed.
The top 3000 variable genes were used to calculate 50 PC and har-
monized over sample ID if available in the deposited data. Gene names
for each species were translated to human gene names using the one-
to-one orthologs index with BioMart. The expression levels of all
humanized genes within each compared cluster were normalized and
averaged before calculating the Pearson’s correlation coefficients,
which were used for heatmap plotting.

Comparison between cleaned classifiers and semi-cleaned 10%
set-aside data. To assess the reproducibility of our derived sub-
clusters, the C50 object was used as an unbiased classifier to annotate
the 10% of nuclei that had been set aside a priori, as described above. A
total of 61,852 nuclei were compared. The nuclei were intentionally
over-split using the top 5000 variable genes (maximum gene number
detected per nucleus) to calculate 100 PC, harmonized over ILO1 u-
niquelD labels. All 100 Harmony embeddings were used to compute
UMAP and nearest-neighbor distances with extremely high resolution
(12; normal suggested resolution range is 0.4-1.2). A total of 140
clusters were found, and the expression levels of genes within each
cluster were normalized and averaged before calculating the Pearson’s
correlation coefficients across each pair of subclusters in the two
datasets, which were used for heatmap plotting.

Histology
H&E staining. Sections used for histology were archival formalin-fixed,
paraffin-embedded (FFPE) contained in an in-house marmoset tissue
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library. Serial sections were cut at 5 um from the brain and spinal cord
tissue blocks from each animal using a Leica RM2235 Manual Rotary
Microtome. Sections were mounted onto Superfrost’/Colorfrost”
microslides (Daigger, 75 mm x 25 mm, #EF159787) and stored at room
temperature. Before staining, sectioned slides were deparaffinized
with xylene three times for 5 min each, rehydrated with EtOH (100, 70,
50% for 5 min each), and rinsed in DI H,O for 5 min at RT. Hematoxylin
& eosin staining was subsequently performed. Hematoxylin (baso-
philic) stains nucleic acids and nuclei purple, whereas eosin (acid-
ophilic) stains cytoplasmic components of the cell pink. For
hematoxylin staining: slides were dipped one-by-one in hematoxylin
(Leica, 100% Surgipath SelecTech Hematoxylin 560MX, 3801575) for
1 min and immediately placed in running tap water to stop the reaction
and rinse off excess stain. Slides were then dipped one-by-one for 30 s
in the Define solution (Leica, Surgipath SelecTech Define MX-aq,
3803598) to reduce the intensity of hematoxylin and immediately
placed in running tap water to stop the reaction. Sections were dipped
one by one in Blue Buffer solution (Leica, Surgipath SelecTech Blue
Buffer 8, 3802918) for 1 min to change tissue color to blue. This reac-
tion was stopped by placing slides in 80% ethanol for 1 min. For eosin
staining: slides were dipped together for 30 s in eosin (Leica, Surgipath
SelecTech Alcoholic Eosin Y 515, 3801615) and put in 100% ethanol for
1 min, three times. Coverslips were mounted on slides right away using
VectaMount Permanent Mounting Medium (Vector Laboratories, #H-
000-60).

Immunostaining. For immunostaining, deparaffinized and rehydrated
slides were submerged in 1X antigen retrieval solution (AG unmasking
solution, H-3000, Vector) and placed in a tissue streamer for 2 h to
perform heat-induced epitope retrieval (HIER). At the end of HIER,
sections were left cooled for 10 min inside the steamer. The sections
were transferred to 1X TBS (pre-cooled at 4 °C) for 5 min, then blocked
for endogenous peroxidase by submersion in 3% H,O, for 10 min, and
then rinsed in 1X TBST (0.05% tween 20 in 1X TBS) for 1 min at room
temperature (RT). A parafilm pan was used to demarcate the sur-
rounding of each section after removing excess liquid with Kimwipes,
and 200 pL of blocking solution (Protein block, serum-free, X090930-
2, Dako) was applied per section for 30 min at RT. Primary antibodies
were diluted in antibody diluent (S080983-2, Dako) and applied to
sections overnight at 4 °C. Sections were rinsed in 1X TBST once for
1 min, then twice for 5 min, and appropriate secondary antibodies were
applied for 30 min at RT. Sections were rinsed in 1X TBST once for
1min, then twice for 5min, and 200 pL of immunoperoxidase devel-
opment solution (DAB Substrate Kit, ab64238, Abcam) was applied
per section for 45s at RT. Chromogenic reactions were stopped by
switching to DI water, and sections were rinsed with tap water for 5 min
at RT. For double staining, 200 pL of alkaline phosphatase substrate
solution (Vector® Blue Substrate Kit, SK-5300, Vector) was applied to
each section for 5 min at RT. Chromogenic reactions were stopped by
switching to DI water, and sections were rinsed with tap water for 5 min
at RT. The following antibodies were used: mouse anti-PLP (Bio-Rad,
MCAS839G, 1:200), rabbit anti-IBA1 (Wako, 019-19741, 1:200), mouse
anti-IBA1 (Sigma, SAB2702364, 1:100), rabbit anti-SLCI5A1 (Sigma,
HPA002827, 1:100), rabbit anti-OLIG2 (Chemicon®, AB9610, 1:200),
rabbit anti-GFAP (Dako, Z033429-2, 1:200), PV Poly-HRP Anti-Rabbit
IgG (Leica, PV6119, 1:1), PV Poly-HRP Anti-Mouse IgG (Leica, PV6114,
1:1), ImmPRESS®-AP Horse Anti-Rabbit IgG Polymer (Vector, MP-5401-
50, 1:.1), ImmPRESS®-AP Horse Anti-Mouse IgG Polymer (Vector, MP-
5402-50, 1:1), Goat anti-Rabbit IgG (H + L) Cross-Adsorbed Secondary
Antibody, Alexa Fluor 594 (Invitrogen, A-11012, 1:400).

Fluorescence in situ hybridization (FISH). For FISH, HIER-treated
slides as described above were submerged in 1X PBS for 5 min, then
treated with 10 pg/mL proteinase K (Proteinase K, recombinant, PCR
Grade, Roche, 03115879001) for 10 min at 37°C. At the end of

incubation, slides were rinsed in 1X PBS for 1 min, submerged in fresh
1X PBS for 5 min, and rinsed in 1X TBST for 1 min at RT. A parafilm pan
was used to demarcate the surrounding of each section after removing
excessive liquid with Kimwipes. In the case of combining immuno-
fluorescence staining and FISH, 200 pL of blocking solution was
applied per section for 30 min at RT, and primary antibodies were
diluted in antibody diluent and applied on sections overnight at 4 °C.
Sections were rinsed in 1X TBST once for 1 min, then twice for 5 min,
then post-fixed with 4% PFA (made from 32% paraformaldehyde aqu-
eous solution, 15714-S, Electron Microscopy Sciences, in 1X PBS) for
10 min at RT. Slides were rinsed in 1X PBS for 1 min, then submerged in
fresh 1X PBS twice for 5min, prior to FISH. Slides were incubated at
37 °C for 10 min with a 30% probe hybridization buffer constituted of
30% formamide (F9037, Sigma-Aldrich), 5X SSC (46-020-CM, Corning),
9 mM citric acid (C0706, Sigma-Aldrich), 0.1% Tween 20 (1610781, Bio-
Rad), 50 pg/mL heparin (H3393, Sigma-Aldrich), 1X Denhardt’s solu-
tion (D2532, Sigma-Aldrich), and 10% dextran sulfate (D8906, Sigma-
Aldrich) in ddH,O0. At the end of pre-hybridization, excess hybridiza-
tion buffer was removed by blotting the edges on Kimwipes.

HCR probe set (Hybridization chain reaction v3.0)” (targeting
marmoset OL/G2 (PRL850, Molecular Instruments) and MUSK (PRI863,
Molecular Instruments) were prepared in a 30% probe hybridization
buffer. In a leveled and humidified chamber, 1.2 pmol probe solution
(250 pL per brain section) was applied onto a slide, covered with a
parafilm, and then incubated overnight at 37 °C. At the end of incu-
bation, the parafilm was floated off by submerging the slide in 30%
probe wash buffer (30% formamide, 5X SSC, 9 mM citric acid, 0.1%
Tween 20, 50 ug/mL heparin in ddH,0) at 37°C. After parafilm
removal, slides were incubated with 75%, 50%, and 25% serial diluted
30% probe wash buffer in 5X SSC-Tw containing 0.1% Tween 20 for
15 min each at 37 °C. Slides were then brought to RT and submerged
with 100% 5X SSC-Tw for 5 min and dried by blotting the edges with
Kimwipes. In a humidified chamber, 200 pL of amplification buffer (5X
SSC, 0.1% Tween 20, and 10% dextran sulfate in ddH,0) was applied to
the slide and incubated for 30 min at RT. Snap-cooled (heat to 95 °C for
90 s and cool to RT for 30 min) hairpin H1 and H2 were kept in the dark
chamber and reconstituted in 150 pL of amplification buffer. Excessive
amplification buffer was removed from the slide by blotting the edges
with Kimwipes, and 150 pL hairpin solution was applied onto each
section and covered with parafilm overnight at RT in a humidified dark
chamber. At the end of incubation, the parafilm was floated off by
submerging the slide in 5X SSC-Tw at RT, and the excessive hairpin
solution was removed by incubating the slide in 5 C SSC-Tw 3 times for
15 min each at RT. In the case of combining immunofluorescence and
FISH, slides were incubated with matching Alexa-conjugated second-
ary antibody were prepared in antibody diluent for 1.5 h at RT. At the
end of incubation, sections were rinsed in 1X TBST once for 1 min, then
twice for 5min. Sections were then incubated with 1X PBS for 5 min
before applying TrueBlack Lipofuscin Autofluorescence Quencher
(23007, Biotium) for 5 min at RT to reduce background. Sections were
rinsed in 1X PBS twice for 1 min, then once for 5 min. The excessive
liquid was removed by suction, 50 pL of mounting solution with nuclei
stain (DAPI Fluoromount-G®, 0100-20, SouthernBiotech) was applied,
and the slide was covered with glass (Premium Cover Glasses,
EF15972L, Daigger Scientific).

Microscopy and cell quantification

On hematoxylin & eosin-stained slides from each animal, boxes were
drawn around each 2-mm area of interest in the brain and spinal cord.
Each region was imaged at 10X magnification with a Nikon Eclipse Ci
microscope. The number of cells in each area of interest was counted
using Fiji ImageJ. A color image threshold of 0-165 was chosen to
highlight an optimal number of cells and limit the number of falsely
identified cells. Using the “Analyze Particles” function, the number of
cells at the chosen threshold was counted automatically, with the pixel
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size range set to 20-200, and the circularity range to 0.25-1.00, to
exclude as much background noise and as many linear particles as
possible. After the automatic counting, falsely identified cells were
manually deleted, and a new count was saved. Additional cells not
detected by the automatic counter were manually added using the
CellCounter plugin. A final image with automatic and manual cell count
markers was saved, and the total number of cells (including manual
deletions and additions to the automatic count) was recorded. Cell
counts were normalized to the imaged area to get the density of nuclei
per tissue type in each animal. The averaged nuclei density per mm?in
each tissue type was then quantified. To estimate the initial number of
nuclei for single-nucleus sequencing per cylinder of 2mm diameter
and 3 mm height (V=3m uL), the averaged 2D density measured from
hematoxylin & eosin-stained sections was used after multiplication by
section thickness (5um). The percentage of nuclei recovered after
Level 1 quality control for each sample was then plotted, each circle
representing the percentage of one sample (Supplementary Fig. 1e).

For particle and morphology analysis, slides with PLP1/IBA1 dou-
ble staining were imaged at 20X with Nikon Eclipse Ci microscope and
analyzed with Fiji Image]J. The color image was split into RGB channels,
thresholding was done on the blue channel to highlight the IBA1" area,
and the “Fill Holes” function, located under the Process-Binary tab, was
applied to the image. Areas with artifacts, such as tissue folding, were
manually corrected on the binary image. The “Find Connected
Regions” function, located under the Plugins-Process tab, was then
applied with the following parameters: allow a diagonal connection,
display one image for all regions, display results table, and minimum
number of points in a region >450. In parallel, the “Analyze Particles”
function, under Analyze tab, was applied to the artifact-corrected
binary image, through which count, area, perimeter, and circularity
were recorded to quantify the morphology of IBA1" cells (Fig. 3f-h).

For fluorescent imaging, slides stained with anti-OLIG2 (Alexa-594
nm), HCR-OLIG2 (Alexa-488 nm), HCR-MUSK (Alexa-647 nm), and DAPI
were imaged at 40X (EC Plain-Neofluar 40x/1.30 Qil DIC objective) with
LSM 880 (AxioObserver, Zeiss) laser scanning confocal microscope
equipped with 405nm diode, 488 nm argon, 594 nm HeNe, and
633 nm HeNe lasers. A single image was taken with 0.21-um pixel size, 2
averaging, and 0.85 airy unit. Pseudocolors were assigned to each
channel with detection wavelength 415-467 nm in blue, 490-553 nmin
green, 597-642 nm in white, and 642-695 nm in red.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Raw and processed datasets are submitted to Gene Expression
Omnibus (GEO) under session GSE165578. Data can also be visualized
at https://cjpca.ninds.nih.gov. Source data are provided with this
paper. Databases and datasets used in the study are listed in “Table 1”
also with the following accession codes and links: GSE121654,
GSE132166, GSE75330, SRP135960, GSE52564, phs001836, GSE97930,
GSE104525, GSE73721, GSE118257, GSE180759, Marmoset Gene Atlas
[https://gene-atlas.brainminds.riken.jp/l, and Marmoset Brain Map-
ping [https://marmosetbrainmapping.org/].
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SupFig. 4 - Related to Fig1
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SupFig. 5 - Related to Fig1
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SupFig. 6 - Related to Fig1
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SupFig. 7 - Related to Fig1

a Cross-cluster comparison: averaged gene expression




SupFig. 8 - Related to Fig1
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SupFig. 9 - Related to Fig2

a Level 2 analysis - NEU

NEU21 NEUOS
NEU20 NEUO08
NEU22 NEU14
NEU1o  NEUO7
NEU18 NEU11
NEU02 NEU13
NEU15
NEUO03 NEU12
NEU17 NEUO1
NEU09
NEU26 NEI:’;?JO4 NEU
NEU19 05
NEU28 NEU23
NEU27
NEU37 NEU29
NEU50 NEU25
NEU31 NEU35 NEU3S  NEUs9
NEU24
NEU30 NEU36
NEU49 NEU34
NEU40 ©® NEUO1_TLL2 PHLDB2
© NEUO2_ATP10A.TEX15
NEU43 NEUO3_ATP10A.CYP2J2
NEUO4_LHX9. TFAP2D.KCNQ4
NEU32  NEU33 NEU42 NEU41 NEUO5_GATA3.OLFML2B
NEUO0B_GATA3.OLFML2B.TNC.PVALB
NEUO7_GATA3.OLFML2B.TNC.CTSC
NEU47 NEUO8_GATA3.OLFML2B.TNC
NEU44 NEU09_STAC.SMOC2.PALMD
NEU48 » NEU10_STAC.CPNE2.PALMD.VIP
NEU45 ©® NEU11_STAC.CPNE2 (Int L2:ADARB2.VIP)
NEU12_STAC.PAX5
NEU46 ©® NEU13_STAC.FRMD?
SATB2 RBMS3 ADARB2 LHX6
PDZD2 CMTM8 RORB ADAMTS17

e s : T

GAD2 u
GAD1 ) moe o2
SLC17A8 o ® 50
SLC17A7 'Y X3 PEX RS

sLo17a6 [

Giyoinergic . ) o
Cholinergic it . t . R
Serotonergic { ! L 11 et LH .
Noradrenergici+———+—4—+—++++ L L E L] 1 5 ® x
popaminergiec -4+ EEEET I ®w
g 288 288 [

NEU34_GM.~oCTX

NEUO1_OpTMB
NEU02_LGN
NEUO7_Thal-+
NEUOB_pCC
NEU0S_pCC
NEU10_Hi
PT.Pons.cSC
NEU17_GM
NEU1B_Hipp -~ + +
NEU19_pCC-++
NEU20_Cd
NEU21_Cd-++
NEU31_Hi
NEU32_GM.Hi
NEU33_GM
NEU35_GM.~oCTX
NEU36_oCTX - -
NEU37_0CTX
NEU38_GM -+
NEU39_GM
NEU49_CgG.ICTX -+ +
NEUS0_GM.-oCTX

NEU12_MB.Of

b Vesicular glutamate transporters

under10%.VGLUTs
VGLUTY
VGLUT1/2

® VGLUT13

® VGLUT2

NEU14_KDR (Int L1:ADARB2.LAMPS5)
NEU15_LHX6.LRRC38 (Int L4:PVALB)
NEU16_LHX6.ITGA9
NEU17_LHX6.PROMT (Int L3:SST)
NEU18_LHX6.SLC22A3
NEU19_LHX6.SST.CCDC141
NEU20_SOX6.NKX2-1
NEU21_SOX6.NKX2-1.LTBP2
NEU22_TFAP2D.EBF1
NEU23_GRM2.SLC6AS5 (Golgi)

SLC17A7 (VGLUT1)

GAD1

NEU24_MEGF10.PPP1R17.CALB1 (Purkinje)

NEU25_MEGF10.PRKCD (MLI)

NEU26_LDLRAP1.ART3.ATP1A4.SNCG (Granual)

LAMPS

DPP10

 NEU SEmSS
EUOT {7 77 1 o7 v
NEU02 |+ +
NEU03
NEUO4
NEUOS

SLC17A6 (VGLUT2)

GAD2

@® NEU27_LDLRAP1.ART3.ATP1A4 (Granual)
NEU28_LDLRAP1.ART3 (Granual) D
NEU29_LDLRAP1.EOMES.CPLX3 (UBC) @
NEU30_DRD3.LPL
NEU31_TRHR.SLC47A1 [ ]
NEU32_IL12RB1.ADAM2 (Ext L2/3) [ ]
NEU33_IL12RB1.RORB (Ext L4)

© NEU34_RORB.WDR49 (Ext L4)

NEU35_RORB.TYR (Ext L4)

NEU36_RORB.INPP5D (Ext L4)

NEU37_RORB.ADAMTS17 (Ext L4)

NEU38_RORB.ABCA12 (Ext L4)

NEU39_RORB.ATP1A4 (Ext L4)

VIP PVALB

SYNPR TSHZ2

SLC17A8 (VGLUT3)

High

SLC6A1

NEU40_RORB.THEMIS (Ext L4)
NEU41_RORB.THEMIS.LRP2 (Ext L4/5)
NEU42_THEMIS.BMP5 (Ext L5)
NEU43_THEMIS.GADL1 (Ext L6)
NEU44_CMTM8.DDR2 (Ext L6)
NEU45_CMTM8.NXPH4 (Ext L6)
NEU46_CMTM8.SYK
NEU47_ADAMTS7.CD36 (Cycle:TOP2A)
NEU48_LSP1.POU3F1
NEU49_POU3F1.PIEZO2
NEU50_SLC17A8.LHFPL2

SST

HIP1
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SupFig. 12 - Related to Fig2

a  Level 2 Partition - NEU gene module analysis
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SupFig. 13 - Related to Fig2
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SupFig 14 - Related to Fig3

a Level 2 analysis - MIC
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SupFig 15 - Related to Fig3
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SupFig 18 - Related to Fig4

a Level 2 Partition - OPC
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SupFig 20 - Related to Fig4
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SupFig 21 - Related to Fig4

a Level 2 Partition - OPC: ion channels b
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a Level 2 analysis - VAS
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d Model Intercellular Interactions

SupFig 41 - Related to Fig8
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Alzheimer disease or frontotemporal dementia (634)

SupFig 43 - Related to Fig9
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autism spectrum disorder or intellectual disability (719)
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